Combined Effects of Phytohemagglutinin and Staphylococcal Enterotoxin B on Deoxyribonucleic Acid Synthesis During Blast Transformation in Human Lymphocytes

AUTOR(ES)
RESUMO

Three mitogenic agents, phytohemagglutinin (PHA), staphylococcal enterotoxin B (SEB), and concanavalin A (Con A) were tested for their effects on deoxyribonucleic acid (DNA) synthesis in the normal human lymphocyte. When optimal concentrations of PHA and SEB were combined, tritiated thymidine incorporation in lymphocytes derived from several donors was enhanced significantly. In the presence of graded concentrations of one of these mitogens added to fixed optimal concentrations of the other, this enhancement was shown to be additive. By contrast, when PHA or SEB were combined with Con A, the resulting thymidine incorporation was slightly lower than for either mitogen alone. An inhibition of further thymidine incorporation when puromycin was added to lymphocytes incubated with PHA and SEB suggested that the additive effect of these mitogens was due to increased enzyme synthesis. To define potential differences in mechanisms of action underlying the additive effect of SEB and PHA, the relative contribution of the de novo and salvage pathways for pyrimidine biosynthesis was tested with cytidine, a specific salvage pathway inhibitor. Cytidine (10−3 M) inhibited synthesis through the salvage pathway, but did not significantly alter induction of carbamyl phosphate synthetase II, the rate-limiting enzyme for the de novo pathway. An inhibition of DNA synthesis by millimolar cytidine concentrations in lymphocytes incubated with PHA or SEB, singly or in combination, suggested that pyrimidines for the observed enhancement of DNA synthesis were derived largely via the salvage pathway.

Documentos Relacionados