Chemical and immunological comparison of surface fibrils of strains representing six taxonomic groups of Actinomyces viscosus and Actinomyces naeslundii.

AUTOR(ES)
RESUMO

Human isolates of Actinomyces viscosus and Actinomyces naeslundii have been divided into six clusters in a numerical taxonomy study. Surface fibrils of strains representing these clusters were isolated and purified. Chemical analyses revealed that the major component of all fibrils was protein and that although differences in percentages of specific amino acid residues were found, the relative proportions of basic, acidic, polar uncharged, and nonpolar amino acids were rather similar among clusters. All of the fibrils except those from strain B236 (cluster 2) either failed to migrate or penetrated only slightly into gels during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after boiling, reduction, or alkylation. Immunological studies by electron microscopic examination of fibril-antibody immunocomplexes, whole bacterial cell agglutination, inhibition of hemagglutination, and immunofluorescence by using antifibril antisera and antibodies demonstrated that strains of typical A. naeslundii (cluster 5) have a specific fibril-associated antigen(s) distinct from those of strains of other clusters. Cross-reactions for atypical A. naeslundii (cluster 3) were few. The fibrils from A. viscosus clusters 1, 2, 4, and 6 demonstrated several cross-reactions. By absorbing antifibril antibodies with cross-reactive strains it was possible to obtain cluster-specific antibodies, as determined by whole cell agglutination, only for cluster 5. Absorbed antifibril antisera for both A. naeslundii clusters 3 and 5 were specific by indirect immunofluorescence, whereas anti-cluster 1 fibril antisera cross-reacted only with other A. viscosus cluster representatives. Purification of Actinomyces fibrils by methods used for appendages of other species yields preparations containing common antigens among taxonomic groups. However, absorbing antifibril antisera, gamma globulin, or both has promise for producing cluster-specific reagents useful in identification.

Documentos Relacionados