Cell surface components of Streptococcus sanguis: relationship to aggregation, adherence, and hydrophobicity.

AUTOR(ES)
RESUMO

Cell surfaces of aggregation, adherence, and hydrophilic variants of Streptococcus sanguis were compared with cell surfaces of the parent strain with regard to their protein and antigenic constituents. Cell surface molecules were released by digestion with mutanolysin. Extraction with sodium dodecyl sulfate (SDS) urea, lithium diiodosalicylate, and boiling water did not solubilize any material which stained with AgNO3 in an SDS-polyacrylamide gel electrophoresis gel. The parent organism S. sanguis 12, which aggregates in saliva, adheres to saliva-coated hydroxyapatite and is hydrophobic, was found to possess a prominently staining 160,000 molecular weight (MW) protein. This protein was almost completely absent from strain 12na, a hydrophobic nonaggregating variant, and was completely absent from the hydrophilic nonaggregating strain 12L. Trypsinization of strain 12 resulted in the coincident loss of the 160,000-MW protein and the ability to aggregate in saliva. Trypsin treatment reduced but did not eliminate the hydrophobic character of the cells. Boiling destroyed their ability to aggregate, but did not alter their hydrophobicity. Cell wall digests of strain 12 contained a number of proteins which were absent from strains 12na and 12L. Mutanolysin digests of cell walls of the hydrophilic strains contained almost no material that was visible in a silver-stained SDS-polyacrylamide gel electrophoresis gel. Culture supernatants contained a number of proteins which were immunologically cross-reactive with cell surface proteins. The hydrophilic organisms released a number of 60,000- to 90,000-MW proteins not seen in culture supernatants from the parent strain.

Documentos Relacionados