Calcium Transport in Sealed Vesicles from Red Beet (Beta vulgaris L.) Storage Tissue 1: I. Characterization of a Ca2+-Pumping ATPase Associated with the Endoplasmic Reticulum

AUTOR(ES)
RESUMO

Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca2+, A23187 stimulated-ATPase). Both calcium uptake and Ca2+, A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [γ-32P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.

Documentos Relacionados