Bilirubin kinetics in intact rats and isolated perfused liver. Evidence for hepatic deconjugation of bilirubin glucuronides.

AUTOR(ES)
RESUMO

Most previous compartmental models describing bilirubin transport and metabolism in the liver have been validated solely by analysis of the plasma disappearance of radiolabeled bilirubin in human subjects. We now have determined the transport kinetics of a bilirubin tracer pulse by analysis of plasma, liver, and bile radioactivity data from 30 intact rats. Plasma [3H]bilirubin disappearance was best described by the sum of three exponentials, and a six-compartment model, derived by simulation analysis, was necessary and adequate to describe all experimental data. Examination of the injected radiolabeled bilirubin by extraction with hexadecyltrimethylammonium bromide and thin-layer chromatography revealed that 6.6% (mean) of the original pigment had been degraded to labeled nonbilirubin derivatives during preparation of the tracer dose. This material exhibited a significantly longer half-life (mean 50.6 min) of the plasma terminal exponential than that of authentic radiobilirubin (20.6 min). In isolated perfused rat liver, the kinetics of [3H]bilirubin in perfusate and bile readily fitted the proposed model. Compatibility of the model with the data obtained, both in the isolated liver and in vivo, required that a fraction of bilirubin conjugated in the liver be deconjugated and returned to the plasma. Deconjugation of bilirubin glucuronides was evaluated directly by infusion of bilirubin monoglucuronides, containing 14C in the glucuronosyl group, into rats with an external bile fistula. Since metabolic degradation of hydrolyzed 14C-labeled glucuronic acid yields 14CO2, this was measured in expired air. Whereas 86% of the administered labeled pigment was recovered in bile, 7% of the label appeared in 14CO2. These findings directly validate a portion of the proposed kinetic model and suggest that hepatic deconjugation of a small fraction of bilirubin glucuronides is a physiological event. Deconjugation may also account, at least in part, for the presence of increased concentrations of unconjugated bilirubin in the plasma of patients with cholestasis.

Documentos Relacionados