Analysis of P2X2 e P2X4 receptors during neuronal differentiation / Análise dos receptores P2X2 e P2X4 durante a diferenciação neuronal

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

During the development of the nervous system, oscillations of intracellular calcium concentrations activate programs of gene expression resulting in proliferation, migration and neuronal differentiation of embryonic cells. In this thesis, the participation of ionotropic P2X2 and P2X4 receptor subtypes, whose receptor channels are highly permeable for calcium influx in the cells, was studied during the process of neuronal differentiation. We have identified differential gene expression of purinergic receptors in undifferentiated and neuronal-differentiated P19 cells. P2X4 receptor expression was present along neuronal differentiation of P19 cells, whereas P2X2 receptor expression was only detected when P19 cells became neurons. Based on purinergic receptor pharmacology we have determined the participation of P2X4 receptors in addition to metabotropic P2Y2 receptors in the formation of embryonic bodies as prerequisites for phenotype determination of P19 neural progenitor cells. Final neuronal maturation of P19 cells in the presence or absence of agonists or antagonists of purinergic receptors implicated the involvement of P2X2, P2Y1, and P2Y2 in the determination of the final neuronal phenotype, such as expression of NMDA-glutamate and cholinergic receptors. In order to further evaluate the functions of these P2X receptors and due to the absence of specific inhibitors for these receptor subtypes, we have used the SELEX technique (Systematic Evolution of Ligands by EXponential enrichment) to select for specific inhibitors for P2X2 and P2X4 receptors. The 2-F-pyrimidine modified, nuclease- resistant combinatorial SELEX RNA pool enriched with inhibitors of P2X4 receptors following nine cycles of in vitro selection (cycle 9-P2X4) specifically interacted with P2X4 receptors and not with P2X2 or P2X7 receptors as verified in radioligand-receptor binding studies. Moreover, whole-cell recording measurements using astrocytoma cells expressing recombinant rat P2X2 or P2X4 receptors showed inhibition of P2X4 but not of P2X2 receptors by the selected RNA molecules. RNA molecules selected in vitro in 11 reiterative SELEX cycles using the P2X2 receptor as target specifically bound to membrane extracts containing recombinant P2X2 receptors. From both selected RNA libraries (against P2X4 and P2X2 receptors) aptamers, as RNA molecules with identified sequences and high-affinity binding, were identified by cloning and DNA sequencing. The presence of these aptamers in whole-cell recording experiments resulted in 30-80% inhibition of ATP-induced receptor activity and did not provoke any inhibitory effects on P2X receptors which had not been used as selection target. The activity of the aptamers selected using recombinant receptors as targets in inhibiting wild-type P2X4 or P2X2 receptors was verified in whole-cell recording experiments with PC12 cells which endogenously express both receptor subtypes. In addition of having developed aptamers as tools to elucidate P2X2 and P2X4 receptor functions during neuronal differentiation, these nuclease-resistant aptamers are suitable for in vivo use and may turn into therapeutics in the inhibition of purinergic receptor participation in pathophysiological conditions.

ASSUNTO(S)

neuronal differentiation receptores ionotrópicos systematic evolution of ligands by exponential enrichment diferenciação neuronal ionotropic receptor selex carcinoma embrionário murino p19 p2x p2x cinética aptamers receptores purinérgicos purinergic receptors selex aptameros systematic evolution of ligands by exponential enrichment p19 embryonal carcinoma cells

Documentos Relacionados