Analysis of numerically simulated true strain on high stampability sheets

AUTOR(ES)
FONTE

Journal of the Brazilian Society of Mechanical Sciences and Engineering

DATA DE PUBLICAÇÃO

2010-03

RESUMO

The sheet metal forming is a manufacturing process widely used industrially. The quality and efficiency of the process is dependent on the correct choice of the process parameters and the correct understanding of the sheet metal behavior. The identification of the regions where stretching and/or deep drawing occurred during the forming process can aid the process through the tools design optimization. This work consisted of evaluating three punch models with varied geometries. The purpose of this work was to simulate different punch geometries using the ANSYS/LS_DYNA program and to compare the results with those reported in the literature. An evaluation was also made of the chosen program's response quality (validation). The material model chosen was the Barlat's model. The friction coefficient influence was also investigated. A comparison of the major true strain (ε1) obtained by simulation compared with the experimental results indicated that this material model is able to satisfactorily reproduce the major true strain found in practice for the DC 06 steel.

Documentos Relacionados