Analysis of drug resistance in the archaebacterium Methanococcus voltae with respect to potential use in genetic engineering.

AUTOR(ES)
RESUMO

The sensitivity of the methanogenic archaebacterium Methanococcus voltae to 12 inhibitors was tested in liquid medium. Four compounds appeared to be inhibitors of growth. Their MICs were as follows: pseudomonic acid, 0.1 micrograms/ml (0.19 microM); puromycin, 2 micrograms/ml (3.6 microM); methionine sulfoximine, 30 micrograms/ml (170 microM); and fusidic acid, 100 micrograms/ml (170 microM). On solid medium, the MICs were similar and the frequency of spontaneous resistance was found to be 5 X 10(-5) (methionine sulfoximine), 10(-7) (pseudomonic acid), and less than 10(-7) (puromycin and fusidic acid). Pseudomonic acid was found to inhibit isoleucyl-tRNA synthetase activity as measured by the in vitro aminoacylation of M. voltae tRNA with L-[U-14C]isoleucine. Fusidic acid and puromycin were shown to inhibit poly(U)-dependent polyphenylalanine synthesis in S30 extracts. Acetylpuromycin was inhibitory at much higher concentrations both in vivo and in vitro for M. voltae. Thus, the pac gene of Streptomyces alboniger, which is responsible for acetylation of puromycin and which conferred resistance to puromycin when introduced in eubacteria and eucaryotes, is a potential selective marker in gene transfer experiments with M. voltae. The latter was recently shown to be transformable. The same would be true for the cat gene of Tn9, which encodes resistance to fusidic acid in eubacteria in addition to resistance to chloramphenicol.

Documentos Relacionados