Análise da expressão gênica no dermatófito Trichophyton rubrum mimetizando a infecção in vitro: pH e diferentes fontes de carbono regulando genes / Analysis of gene expression in the dermatophyte Trichophyton rubrum during the mimetic infection in vitro: pH and carboun sources are regulating genes

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Dermatophytes are a group of fungi filamentous that have the ability to invade keratinized substrates, causing dermatophytosis in humans and animals and only penetrate deeper if the host is immunocompromised. Trichophyton rubrum is an anthropophilic and cosmopolitan fungi, the most common agent of superficial mycoses, which uses cell components such as proteins and lipids after a specific regulation of its gene expression governed by pH environment and sensing cell. The virulence T. rubrum is related to secretion of proteolytic enzymes, an important factor determinant in the invasion, utilization and subsequently dissemination through the stratum corneum. The aim of this study was to indentify by Suppression Subtractive Hybridization (SSH) T. rubrum genes preferentially expressed during growth in the presence of keratin and lipids, upregulated when this fungus degrades carbon source typically found at epidemic cells. Initially, this work evaluated the changes in the extracellular pH during its growth in keratin and lipid (after 6, 12, 24, 48, 72 h and 7 days) at initial pH 5.0, where we observed a gradual increase of basal pH under both tests when compared to glucose condition (control). Also, we identified 576 T. rubrum transcripts differentially expressed by SSH using conidia cultivated for 72 h in keratin as tester, and in glucose as driver. The T. rubrum genes upregulated encode putative proteins that were validated by cDNA dot-blot and northern blot, showing similarity to fungi proteins involved in basic metabolism, growth and virulence, i.e., transporters ABC-MDR, MFS and ATPase of copper, permease, NIMA interactive protein, Gag-Pol polyprotein, virulence factors serine-protease subtilisins (Sub 3 and 5) and metalloproteases (Mep 3 and 4) and Hsp30. Additionally, among the 762 clones obtained in a library of lipid condition (72 h), 80 over-expressed transcripts were confirmed by cDNA dot-blot, revealing 14 unigenes similar to proteins of several pathogenic organisms, like glicoprotein 43 kD, MDR transporters, G protein, chitin synthase and serine/threonine-protein phosphatase. Transcripts of TruMDR2 gene, encoding an ABC transporter in T. rubrum, were isolated in the presence of keratin and lipid, and the examination of TruMDR2 mutant T. rubrum showed a reduction in infecting activity, characterized by low growth in human nails compared to wild-strain. The high expression of transporter by T. rubrum in conditions that mimetize the infection and the virulence reduction of TruMDR2 in an in vitro model suggests that transporters are involved in T. rubrum pathogenicity. Another mutant, pacC-1 with a knockout in PacC gene that encodes a transcription factor regulated by local pH, showed the expression of proteases (Sub 3, Sub 5 and Mep 4) decreased after growth in keratin (72 h) in comparison to wild-strain in northern blot analyzes. These proteases have an optimal activity in alkaline pH, and our results indicate a defective regulation of T. rubrum pacC gene in the activation of proteases. In conclusion, by means of SSH to identify genes upregulated in T. rubrum after specific treatments, their importance in the dermatophyte-host interaction, installation and maintenance in the disease is suggested. These results provide new insights about T. rubrum that will contribute to a better understanding of molecular mechanisms about the growth, metabolism and pathogenicity, and may also aid in the identification of novel effective drug targets for dermathophytes.

ASSUNTO(S)

fontes de carbono e ph trichophyton rubrum virulência suppression subtractive hybridization carbon source hidridização subtrativa supress virulence trichophyton rubrum

Documentos Relacionados