Analise da expressão de genes que codificam proteinas transportadoras em Acidithiobacillus ferrooxidans e Acidithiobacillus thioxidans na presença de sulfetos metalicos / Expression analyses of genes that encode for transporter protein in Acidithiobacillus ferrooxidans and Acidithiobacillus thioxidans maintained in contact with metal sulphiides

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are acidophilic, chemolitotrophic and mesophilic bacteria found in bioleaching environments. A. ferrooxidans uses ferrous iron and sulphur compounds as an e1ectron donor and A. thiooxidans uses on1y sulphur and sulphur compounds. Both species are aerobic using oxygen as final e1ectron acceptor. However, these bacteria are also able to grow in anaerobic environments. A. thiooxidans is able to survive in pHs ranging from 0.5 to 5.0 while A. ferrooxidans grows in pHs from 1.0 to 2.5. Due to these characteristics and the ability of these bacteria to solubilize metal sulphides, A. ferrooxidans and A. thiooxidans are used in bioleaching. This process has several advantages over the traditional methods and has been used with success in industrial operations to recover main1y copper. However, little is known about the genetic response of these bacteria to the presence of metal sulphides and heavy metal in solution. Therefore, in the first part of this study the A. ferrooxidans LR response to covellite was investigated. This bacterium was maintained in contact with covellite for 24 hours and the differentially expressed cDNAs were identified by RAP-PCR (Random Arbitrarily Primed Polymerase Chain Reaction) technique. Nineteen cDNAs showed a differential expression and twe1ve had their differential expression confirmed by real time PCR. Among these cDNAs, seven codified for transporter proteins (AFE 0123, AFE 0989, AFE 0990, AFE 0580, AFE 0671, AFE 2248 and AFE 1149), one codified for a putative diguanylate cyc1ase, one for a membrane. protein, one for a methyltransferase and one for an A TPase. With the exception of infC whose expression was down regulated, all the oDNAs had their expression up regulated in the presence of covellite. Since most of the differentially expressed genes are involved in transport, chemical modifications on the culture medium after 24 hours were investigated. The atomic absorption analysis showed that the copper amount in solution was 1.13 g/L and pH changed from 1.8 to 4.0 suggesting that these changes are responsible, at least in part, for the induction,"?f1he expression of transport gene. An in si/ico ana1ysis of protein-protein interaction (PPI) between the transport proteins codified by the genes differentially expressed in the presence of covellite and those codified by genes that were physically located around the differentially expressed ones showed that these transport proteins could be involved in different steps of the bacterial response to covellite. The goal of the second part of this study was to analyse the differential expression, by real time PCR, of two ABC proteins (AFE 0123 andAFE 0125) and one RND protein (AFE 0993) inA. thiooxidans FGOl in the presence of chalcopyrite, covellite and pyrite for 24 hours. This strain was maintained in contact with the metal sulphides for 24 hours. The expression ofthe three genes was up regulated in the presence of covellite and unchanged in the presence of chalcopyrite. In the presence of pyrite two genes hOO their expression down regulated and in one (AFE 0993) the expression was unchanged. These results can be explained, at least in part, by the quantities of copper found in solution in covellite (1 g/L) and in chalcopyrite (0.07 g/L). In the presence of covellite and chalcopyrite the pH changed from l .8 to 4.0 and 2.5, respectively. To investigate if the changes in pH or the presence of copper ions in solution were responsible for the induction of the gene expressions, the bacteria were maintained in the presence of copper sulphate (16 mM) and pH 4.0 for 24 hours. The results showed that the presence of copper in solution was the responsible for the up regulation ofthese genes.

ASSUNTO(S)

acidithiobacillus gene expression sulfetos - metalurgia sulphides expressão genica

Documentos Relacionados