Adsorção de corantes têxteis utilizando biossorventes alternativos


IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia




The textile effluents when launched into water bodies reduce the penetration of sun light harming the photosynthesis processes. Besides this, the dyes have been pointed out as potentially toxic substances. In general, the removal processes are based on physicochemical systems followed by biological treatment. The sorption process, besides presenting high removal efficiency, it still has the advantage of easy operation and the possibility of usage of low cost adsorbents. In this work, four new alternative adsorbents were used for the removal of textile dye found in aqueous solutions or synthetic effluents. The study was divided in three working steps. For the removal of the dyes RR-194 and DB-53, RB-5 and RO- 16 of aqueous solutions, the following materials were tested as adsorbents: cupuassu shell (CS), aqai stalk (AS) and acidified aqai stalk (AAS), respectively. For the removal of the dye RR-120 of the synthetic effluent the adsorbing capacity of the blue-green microalgae S. platensis (SP) was evaluated. In order to compare the efficiency of microalgae removal, the tests were also performed using commercial activated carbon (AC). The desorption of the dye RR-120 e reusage of the microalgae was analyzed. The biosorbents were characterized through spectroscopy FTIR, MEV and nitrogen adsorption and desorption curves. Kinetic and balance studies for the systems were developed. To evaluate the removal capacity of the dye RR-120 of S. platensis microalgae and the commercial activated carbon, the thermodynamic aspects of the process were analyzed. The studies using the cupuassu shell, aqai stalk, acidified aqai stalk and the S. platensis microalgae showed that the new adsorbents are excelent low cost alternatives for the removal of textile dyes RR-194 and DB-53, RB-5 and RO-16, and RR-120. All adsorbents presented high removal efficiency. The desorption experiments using NaOH 0.50 mol.L-1 solution demonstrated that the S. platensis microalgae may be reused, with a small loss of removal efficiency, different from the activated carbon, which, despite presenting a good removal efficiency, provided a desorption rate of about 13%, preventing its reuse. The characterization of biosorbents showed that the hydroxyl groups found in phenolic and alcoholic compounds and the carboxylates shall effectively participate in the biosorption mechanism. The results obtained with the CS, AS and AAS biosorbents were better represented by the Avrami fractional order model, while the SP biosorbent was properly adjusted by the general order model. The intra-particle diffusion model suggests that the biosorption occurred in multiple stages. The balance was reached after 10 and 4 hours of contact with the biosorbents RB-5 and RO-16 and AS and AAS, respectively. The time needed to reach the balance between the dyes RR-194 and DB-53 and the biosorbent CS was of 8 and 18 hours, respectively, whereas for the removal of the dye RR-120 with the adsorbent SP and AC, 3 hours were needed. The Sips isotherm model was the one which better represented the adsorption systems using CS, AS and AAS as biosorbents. For the activated carbon and the biosorbent SP the model which best suited the experimental data was the Liu¿s. The adsorption maximum capacity of the dyes RB-5 and RO-16 were of 52.3 mg.g-1 and 61.3 mg.g-1 using AS as biosorbent, respectively, and 72.3 mg.g-1 and 156 mg.g-1 using AAS as biosorbent, respectively. The adsorption maximum capacity of RR-194 and DB-53 was of 64.1 mg.g-1 and 37.5 mg.g-1 using CS as biosorbent, respectively, whereas the adsorption maximum capacity of the dye RR-120 was of 482.2 mg.g-1 and 267.2 mg.g-1 using SP and AC as adsorbent.


biossorvente adsorcao corantes : indústria textil

Documentos Relacionados