Abscission: The Role of Ethylene Modification of Auxin Transport 1

AUTOR(ES)
RESUMO

The role of ethylene-mediated reduction of auxin transport in natural and ethylene-induced leaf abscission was studied in the cotton (Gossypium hirsutum L., cv. Stoneville 213) cotyledonary leaf system. The threshold level of ethylene required to cause abscission of intact leaves was between 0.08 and 1 μl/l with abscission generally occurring 12 to 24 hours following ethylene fumigation. The threshold level of ethylene required to reduce the auxin transport capacity in the cotyle-donary petiole paralleled that required for stimulation of abscission. In plants where cotyledons are allowed to senesce naturally there is a decline in auxin transport capacity of petioles and increase in ethylene synthesis of cotyledons. The visible senescence process which precedes abscission requires up to 11 days, and increases in ethylene production rates and internal levels were detected well before abscission. Ethylene production rates for entire cotyledons rose to 2.5 mμ1 g−1 hr−1 and internal levels of 0.7 μl/l were observed. These levels appear to be high enough to cause the observed decline in auxin transport capacity. These findings, along with those of others, indicate that ethylene has several roles in abscission control (e.g., transport modification, enzyme induction, enzyme secretion). The data indicate that ethylene modification of auxin transport participates in both natural abscission and abscission hastened by exogenous ethylene.

Documentos Relacionados