A cdc-like autolytic Saccharomyces cerevisiae mutant altered in budding site selection is complemented by SPO12, a sporulation gene.

AUTOR(ES)
RESUMO

LYT1 is an essential gene for the growth and morphogenesis of Saccharomyces cerevisiae. A detailed characterization of mutants carrying the lyt1-1 allele showed that this mutation was recessive and pleiotropic, affecting both mitotic and meiotic functions. At the nonpermissive temperature of 37 degrees C, lyt1 haploid strains budded at a distal position (instead of an axial one, as in wild-type haploid strains) and underwent autolysis when the buds were almost the size of the mother cells. These mitotic alterations in cell stability and budding topology were dependent on growth and protein synthesis. Autolysis was prevented by inhibiting DNA synthesis (with hydroxyurea) or by blocking the assembly of microtubules (with benomyl), suggesting that loss of cell viability must occur at a fixed mitotic cycle stage after DNA synthesis and mitotic spindle assembly. On the other hand, lyt1-1/lyt1-1 diploids failed to sporulate at both 24 and 37 degrees C. Taking into account these characteristics, the lyt1 mutant could be considered a cdc-like mutant. By genetic transformation of an appropriate lyt1 strain with a genomic library, ligated to the multicopy vector YEp13, we isolated a gene capable of complementing mitotic alterations but not the meiotic defect. This was the sporulation-specific gene SPO12, which is expressed under the control of the locus MAT in meiosis and is also expressed in the mitotic cycle (V. Parkes and L. H. Johnston, Nucleic Acids Res. 20:5617-5623, 1992). A significant level of SPO12 mRNA can be detected when this gene is inserted in a multicopy plasmid.

Documentos Relacionados